direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Dr.-Ing. Erik Esche

Habilitand; Research Assistant with Teaching Obligations and Continuous Tasks

KWT-A 108 A

Tel. +49 30 314 21634

Fax +49 30 314 26915

S/MIME (X509v3): CA der TU Berlin

Fingerprint (SHA1): 8E:37:62:A1:86:09:B9:DB:06:DF:6C:82:6D:C0:4C:BC:BF:8B:D5:96

Curriculum Vitae

Erik Esche
Geboren 1987 in Berlin

2010 - B.Sc. in Energy- and Process Engineering (TU Berlin); 2011 - Master's Thesis at Carnegie Mellon University, Pittsburgh, PA with Lorenz T. Biegler; 2011 - M.Sc. in Energy- and Process Engineering (TU Berlin); 2015 - PhD (cum laude) in Process Engineering on "MINLP Optimization under Uncertainty of a Mini-plant for the Oxidative Coupling of Methane"; since:Habilitand & PostDoc at Process Dynamics and Operations Group of Prof. Repke


Areas of Research:

  • Optimal operation of process plants
  • Hydroformyltion of long-chained olefines
  • Optimale synthesis of chemical processes under uncertainty
  • Chance Constraints (probabilistic contraints)

Research Projects:


Contact Person for Research Area: Methods for Process Design and Operations

Deputy Contact Person for Research Area: Model Development

Bachelor's and Master's Theses

 Topics on Offer:

  • Knowledge Graphs to Model Chemical Engineering Knowledge and Data
  • Semi-supervised Regression for Control of Dynamic Systems
  • Unscented Transformation for Solution of Joint Chance Constraints
  • Set-based Formulation of Models in Chemical Engineering Using MOSAICmodeling
  • Distributed Database Architectures for Model Development in MOSAICmodeling

Further topics on request.


Adsorption separation of oxidative coupling of methane effluent gases. Mini-plant scale experiments and modeling
Zitatschlüssel Garcia2019
Autor Leonel Garc'ia and Yuly A. Poveda and Gerardo Rodr'iguez and Erik Esche and Hamid Reza Godini and Günter Wozny and Jens-Uwe Repke and Álvaro Orjuela
Seiten 106–118
Jahr 2019
ISSN 1875-5100
DOI 10.1016/j.jngse.2018.11.007
Journal Journal of Natural Gas Science and Engineering
Jahrgang 61
Monat jan
Verlag Elsevier BV
Zusammenfassung This work explored the use of a zeolite molecular sieve as adsorbent material in the separation of effluent gases from an oxidative coupling of methane (OCM) process. The molecular sieve granules were synthesized, characterized, and evaluated as adsorbent material at the mini-plant scale. Dynamic adsorption experiments were performed at different feed temperatures (298, 308, 328?K), with pure and mixed gases (ethylene, ethane, oxygen, nitrogen and carbon dioxide), and at different absolute pressures (2 and 6?bar). The breakthrough curves and the corresponding dynamic temperature profiles from the adsorption system were obtained under the different experimental conditions. According to results pressure swing adsorption can be used as a de-methanizing alternative during the OCM downstream separation, and even as an ethane/ethylene separation alternative. The adsorption capacities for the different gases, per unit mass of adsorbent, at 303?K and 5?bar were: 0.138 kgCO2/kg, 0.094?kg C2H4/kg, 0.082?kgC2H6/kg, and 0.020 kgCH4/kg. A model of the process was implemented within Aspen Adsorption® software, and the transport parameters were adjusted to fit experimental observations. The computer model agreed with experimental results, and it can be used for further process up-scaling and techno-economic evaluation.
Link zur Publikation Download Bibtex Eintrag

Contact Details

Dr.-Ing. Erik Esche
Technische Universität Berlin
Sekr. KWT-9 - Fachgebiet Dynamik und Betrieb technischer Anlagen
Str. des 17. Juni 135
D-10623 Berlin

Tel. +49 (0) 30 314 - 21 634
Fax. +49 (0) 30 314 - 26 915

Zusatzinformationen / Extras


Schnellnavigation zur Seite über Nummerneingabe

Office Hours:

Dr.-Ing. Erik Esche

All in-person office hours are postponed for now. Separate arrangements can be made by .

KWT-A 110